LTL Satisfiability Checking

Kristin Y. Rozier!™* and Moshe Y. Vardi?

I NASA Langley Research Center, Hampton, Virginia 23681
Kristin.Y.Rozier@nasa.gov
2 Rice University, Houston, Texas 77005
vardi@cs.rice.edu

Abstract. We report here on an experimental investigation of LTL satisfiabil-
ity checking via a reduction to model checking. By using large LTL formulas,
we offer challenging model-checking benchmarks to both explicit and symbolic
model checkers. For symbolic model checking, we use both CadenceSMV and
NuSMV. For explicit model checking, we use SPIN as the search engine, and we
test essentially all publicly available LTL translation tools. Our experiments result
in two major findings. First, most LTL translation tools are research prototypes
and cannot be considered industrial quality tools. Second, when it comes to LTL
satisfiability checking, the symbolic approach is clearly superior to the explicit
approach.

1 Introduction

Model-checking tools are successfully used for checking whether systems have desired
properties [[11]. The application of model-checking tools to complex systems involves
a nontrivial step of creating a mathematical model of the system and translating the de-
sired properties into a formal specification. When the model does not satisfy the speci-
fication, model-checking tools accompany this negative answer with a counterexample,
which points to an inconsistency between the system and the desired behaviors. It is
often the case, however, that there is an error in the system model or in the formal spec-
ification. Such errors may not be detected when the answer of the model-checking tool
is positive: while a positive answer does guarantee that the model satisfies the speci-
fication, the answer to the real question, namely, whether the system has the intended
behavior, may be different.

The realization of this unfortunate situation has led to the development of several
sanity checks for formal verification [29]. The goal of these checks is to detect errors in
the system model or the properties. Sanity checks in industrial tools are typically sim-
ple, ad hoc, tests, such as checking for enabling conditions that are never enabled [31].
Vacuity detection provides a more systematic approach. Intuitively, a specification is sat-
isfied vacuously in a model if it is satisfied in some non-interesting way. For example,

* Work contributing to this paper was completed at Rice University, Cambridge University, and
NASA Langley Research Center, and was supported in part by the Rice Computational Re-
search Cluster (Ada), funded by NSF under Grant CNS-0421109 and a partnership between
Rice University, AMD and Cray.

D. Bosnacki and S. Edelkamp (Eds.): SPIN 2007, LNCS 4595, pp. 149-[167 2007.
(© Springer-Verlag Berlin Heidelberg 2007

150 K.Y. Rozier and M.Y. Vardi

the linear temporal logic (LTL) specification O(req — Qgrant) (“every request is even-
tually followed by a grant”) is satisfied vacuously in a model with no requests. While
vacuity checking cannot ensure that whenever a model satisfies a formula, the model is
correct, it does identify certain positive results as vacuous, increasing the likelihood of
capturing modeling and specification errors. Several papers on vacuity checking have
been published over the last few years [2} 13,18, 27,126L 130,134,371, and various industrial
model-checking tools support vacuity checking [12} 3} [8]].

All vacuity-checking algorithms check whether a subformula of the specification
does not affect the satisfaction of the specification in the model. In the example above,
the subformula req does not affect satisfaction in a model with no request. There is, how-
ever, a possibility of a vacuous result that is not captured by current vacuity-checking
approaches. If the specification is valid, that is, true in all models, then model checking
this specification always results in a positive answer. Consider for example the spec-
ification 0(b; — Oby), where by and b, are propositional formulas. If b; and b are
logically equivalent, then this specification is valid and is satisfied by all models. Nev-
ertheless, current vacuity-checking approaches do not catch this problem. We propose
a method for an additional sanity check to catch exactly this sort of oversight.

Writing formal specifications is a difficult task, which is prone to error just as im-
plementation development is error prone. However, formal verification tools offer little
help in debugging specifications other than standard vacuity checking. Clearly, if a for-
mal property is valid, then this is certainly due to an error. Similarly, if a formal prop-
erty is unsatisfiable, that is, true in no model, then this is also certainly due to an error.
Even if each individual property written by the specifier is satisfiable, their conjunction
may very well be unsatisfiable. Recall that a logical formula ¢ is valid iff its negation
- is not satisfiable. Thus, as a necessary sanity check for debugging a specification,
model-checking tools should ensure that both the specification ¢ and its negation —¢
are satisfiable. (For a different approach to debugging specifications, see [1].)

A basic observation underlying our work is that LTL satisfiability checking can be
reduced to model checking. Consider a formula @ over a set Prop of atomic proposi-
tions. If a model M is universal, that is, it contains all possible traces over Prop, then @
is satisfiable precisely when the model M does not satisfy —¢. Thus, it is easy to add a
satisfiability-checking feature to LTL model-checking tools.

LTL model checkers can be classified as explicit or symbolic. Explicit model check-
ers, such as SPIN [28] or SPOT [15]], construct the state-space of the model explicitly
and search for a trace falsifying the specification [12]. In contrast, symbolic model
checkers, such as CadenceSMYV [32]], NuSMV [9], or VIS [3], represent the model and
analyze it symbolically using binary decision diagrams (BDDs) [7].

LTL model checkers follow the automata-theoretic approach [45], in which the com-
plemented LTL specification is explicitly or symbolically translated to a Biichi automa-
ton, which is then composed with the model under verification; see also [44]]. The model
checker then searches for a trace of the model that is accepted by the automaton. All
symbolic model checkers use the symbolic translation described in [10] and the anal-
ysis algorithm of [17], though CadenceSMV and VIS try to optimize further. There
has been extensive research over the past decade into explicit translation of LTL to

LTL Satisfiability Checking 151

automata[13, [14} [18] [19} 20| 25| 21} 24} 40, 38| 142], but it is difficult to get a clear
sense of the state of the art from a review of the literature. Measuring the performance
of LTL satisfiability checking enables us to benchmark the performance of LTL model
checking tools, and, more specifically, of LTL translation tools.

We report here on an experimental investigation of LTL satisfiability checking via
a reduction to model checking. By using large LTL formulas, we offer challenging
model-checking benchmarks to both explicit and symbolic model checkers. For sym-
bolic model checking, we used both CadenceSMV and NuSMV. For explicit model
checking, we use SPIN as the search engine, and we tested essentially all publicly
available LTL translation tools. We used a wide variety of benchmark formulas, either
generated randomly, as in [[14], or using a scalable pattern (e.g., A%, p;). LTL formulas
typically used for evaluating LTL translation tools are usually too small to offer chal-
lenging benchmarks. Note that real specifications typically consist of many temporal
properties, whose conjunction ought to be satisfiable. Thus, studying satisfiability of
large LTL formulas is quite appropriate.

Our experiments resulted in two major findings. First, most LTL translation tools
are research prototypes and cannot be considered industrial quality tools. Many of them
are written in scripting languages such as Perl or Python, which has drastic negative im-
pact on their performance. Furthermore, these tools generally degrade gracelessly, often
yielding incorrect results with no warning. Among all the tools we tested, only SPOT
can be considered an industrial quality tool. Second, when it comes to LTL satisfiabil-
ity checking, the symbolic approach is clearly superior to the explicit approach. Even
SPOT, the best LTL translator in our experiments, was rarely able to compete effectively
against the symbolic tools. This result is consistent with the comparison of explicit and
symbolic approach to modal satisfiability [35) [36], but is somewhat surprising in the
context of LTL satisfiability in view of [39].

Related software, called 1btt provides an LTL-to-Biichi explicit translator test-
bench and environment for basic profiling. The 1btt tool performs simple consistency
checks on an explicit tool’s output automata, accompanied by sample data when incon-
sistencies in these automata are detected [41]. Whereas the primary use of 1btt is to
assist developers of explicit LTL translators in debugging new tools or comparing a pair
of tools, we compare performance with respect to LTL satisfiability problems across a
host of different tools, both explicit and symbolic.

The structure of the paper is as follows. Section 2 provides the theoretical back-
ground for this work. In Section 3, we describe the tools studied here. We define our
experimental method in Section 4, and detail our results in Section 5. We conclude with
a discussion in Section 6.

2 Theoretical Background

Linear Temporal Logic (LTL) formulas are composed of a finite set Prop of atomic
propositions, the Boolean connectives —, A, V, and —, and the temporal connectives X
(next time) U (until), R, (release), [(also called G for “globally”) and ¢ (also called
F for “in the future”). We define LTL formulas inductively:

! fwww . tcs . hut. £1/Software/1btt/

www.tcs.hut.fi/Software/lbtt/

152 K.Y. Rozier and M.Y. Vardi

Definition 1. For every p € Prop, p is a formula. If ¢ and ¥ are formulas, then so are:
0 Ay 9=y 0UY GO
ovVYy Xo PR Fo
LTL formulas describe the behavior of the variables in Prop over a linear series of
time steps starting at time zero and extending infinitely into the future. We satisfy such
formulas over computations, which are functions that assign truth values to the elements
of Prop at each time instant [16].

Definition 2. We interpret LTL formulas over computations of the form m : o — 2F70P.
We define m,i & @ (computation T at time instant i € O satisfies LTL formula ¢) as
follows:

n,i E p for p € Prop if p € n(i).

TiEQAYIfTiE@andmiE .

WiE-Qifm,i Q.

miEXeifni+1FE@.

wikEQ@UYif3j > i suchthat m, j E Y and Vk,i < k < j, we have T,k E @.
mikE QR IfVj >0 ifn, jE v, then 3k, i <k < j, such that T,k F @.

We define (F @) as (true UQ) and (G@) as (—F —¢). We take models(9) to be the set
of computations that satisfy ¢ at time 0, i.e., {n:T,0E ¢}.

In automata-theoretic model checking, we represent LTL formulas using Biichi
automata.

Definition 3. A Biichi Automaton (BA) is a quintuple (Q,%,8,qo,F) where:

Q is a finite set of states.

2 is a finite alphabet.

6: Q x X — Q is the transition relation.
qo € Q is the initial state.

F C Q is a set of final states.

A run of a Biichi automaton over an infinite word w = wg, w1, wz, ... € X is a sequence of
states qo,q1,q2, - .- € Q such that Vi > 0, 8(q;,w;) = gi+1. An infinite word w is accepted
by the automaton if the run over w visits at least one state in F infinitely often. We denote
the set of infinite words accepted by an automaton A by Ly (A).

A computation satisfying LTL formula ¢ is an infinite word over the alphabet X = 2°7°P
The next theorem relates the expressive power of LTL to that of Biichi automata.

Theorem 1. [46] Given an LTL formula @, we can construct a Biichi automaton Ay =
(0,%,8,q0,F) such that |Q| is in 200®), £ = 2P1°P and Ly,(A¢) is exactly models().

This theorem reduces LTL satisfiability checking to automata-theoretic nonemptiness
checking, as @ is satisfiable iff models(@) # 0 iff Ly(Ag) # 0.

We can now relate LTL satisfiability checking to LTL model checking. Suppose we
have a universal model, M, that generates all computations over its atomic propositions;
that is, we have that L+ o(M) = (27°P)®. We now have that M does not satisfy =@ if
and only if @ is satisfiable. Thus, @ is satisfiable precisely when the model checker finds
a counterexample.

LTL Satisfiability Checking 153

3 Tools Tested

In total, we tested eleven LTL compilation algorithms from nine research tools. To
offer a broad, objective picture of the current state-of-the-art, we tested the algorithms
against several different sequences of benchmarks, comparing, where appropriate, the
size of generated automata in terms of numbers of states and transitions, translation
time, model-analysis time, and correctness of the output.

3.1 Explicit Tools

The explicit LTL model checker SPIN [28] accepts either LTL properties, which are
translated internally into Biichi automata, or Biichi automata for complemented proper-
ties (“never claims”). We tested SPIN with Promela (PROcess MEta LAnguage) never-
claims produced by several LTL translation algorithms. (As SPIN’s built-in translator is
dominated by TMP, we do not show results for this translator.) The algorithms studied
here represent all tools publicly available in 2006, as described in the following table:

Explicit Automata Construction Tools
LTL2AUT ... i (Daniele—Guinchiglia—Vardi)
Implementations (Java, Perl)ol LTL2Buchi, Wring
LTL2BA (C) oo e (Oddoux—Gastin)
LTL2Buchi (Java)ccoiiiiiiiiiiiinnnn, (Giannakopoulou-Lerda)
LTL — NBA (Python)oviiiiiiiiienneeneeananannnnn. (Fritz—Teegen)
Modella (C) ..o (Sebastiani—Tonetta)
SPOT (C++4) ..ot (Duret-Lutz—Poitrenaud—Rebiha—Baarir—-Martinez)
TMP (SML Of NJ) oottt e i (Etessami)
Wring (Perl) . ..ot e (Somenzi—-Bloem)

We provide here short descriptions of the tools and their algorithms, detailing aspects
which may account for our results. We also note that aspects of implementation includ-
ing programming language, memory management, and attention to efficiency, seem to
have significant effects on tool performance.

Classical Algorithms. Following [46], the first optimized LTL translation algorithm
was described in [24]). The basic optimization ideas were: (1) generate states by demand
only, (2) use node labels rather than edge labels to simplify translation to Promela, and
(3) use a generalized Biichi acceptance condition so eventualities can be handled one
at a time. The resulting generalized Biichi automaton (GBA) is then “degeneralized” or
translated to a BA. LTL2AUT improved further on this approach by using lightweight
propositional reasoning to generate fewer states [14]]. We tested two implementations
of LTL2AUT, one included in the Java-based LTL2Buchi tool and one included in the
Perl-based Wring tool.

TMIﬂ [18] and Wrinﬁ [40] each extend LTL2AUT with three kinds of additional
optimizations. First, in the pre-translation optimization, the input formula is simplified

2 fyww . bell- Labs. com/project/TMP/
3 fww . 1st. tugraz.at/staff/bloem/wring.html

www.bell-labs.com/project/TMP/
www.ist.tugraz.at/staff/bloem/wring.html

154 K.Y. Rozier and M.Y. Vardi

using Negation Normal Form (NNF) and extensive sets of rewrite rules. Second, mid-
translation optimizations tighten the LTL-to-GBA-to-BA translation algorithms. Third,
the resulting automata are minimized further during post-translation optimization. In
the end, TMP produces a BA whereas Wring halts translation with a GBA, which we
had to degeneralize.

LTL2Buchii [25] optimizes the LTL2AUT algorithm by initially generating
transition-based generalized Biichi automata (TGBA) rather than node-labeled BA to
allow for more compaction based on equivalence classes, contradictions, and redun-
dancies in the state space. Special attention to efficiency is given during the ensuing
translation to node-labeled BA. The algorithm incorporates the formula rewriting and
BA-reduction optimizations of TMP and Wring.

Modella focuses on minimizing the nondeterminism of the property automaton in
an effort to minimize the size of the product of the property and system model automata
during verification [38]. If the property automaton is deterministic, then the number of
states in the product automaton will be at most the number of states in the system model.
Thus, reducing nondeterminism is a desirable goal. This is accomplished using semantic
branching, or branching on truth assignments, rather than the syntactic branching of
LTL2AUT. Modella also postpones branching when possible.

Alternating Automata Tools. Instead of the direct translation approach of [46], an alter-
native approach, based on alternating automata, was proposed in [43]. In this approach,
the LTL formula is first translated into an alternating Biichi automaton, which is then
translated to a nondeterministic Biichi automaton.

LTL2BAA [21] first translates the input formula into a very weak alternating au-
tomaton (VWAA). It then uses various heuristics to minimize the VWAA, before trans-
lating it to GBA. The GBA in turn is minimized before being translated into a BA,
and finally the BA is minimized further. Thus, the algorithm’s central focus is on opti-
mization of intermediate representations through iterative simplifications and on-the-fly
constructions.

LTL—NBA[follows a similar approach to that of LTL2BA [19]. Unlike the heuristic
minimization of LWAA used in LTL2BA, LTL—NBA uses a game-theoretic minimiza-
tion based on utilizing a delayed simulation relation for on-the-fly simplifications.

Back to Classics. SPOTH s the most recently developed LTL-to-Biichi optimized trans-
lation tool [15]]. It does not use alternating automata, but borrows ideas from all the tools
described above. It adds two important optimizations: (1) unlike all other tools, it uses
pre-branching states, rather than post-branching states (as introduced in [[13]), and (2)
it uses BDDs ([[6]) for propositional reasoning.

4 http://ase.arc.nasa.gov/people/dimitra/LTL2Buchi.php

5 http://www.science.unitn.it/~stonetta/modella.html

6 http://www.liafa.jussieu.fr/~oddoux/1ltl2ba/

7 http://estragon.ti.informatik.uni-kiel.de/~fritz/ABA-Simulation/ltl.cgi
8 http://spot.1lip6.fr/wiki/Spotwiki

http://ase.arc.nasa.gov/people/dimitra/LTL2Buchi.php
http://www.science.unitn.it/~stonetta/modella.html
http://www.liafa.jussieu.fr/~oddoux/ltl2ba/
http://estragon.ti.informatik.uni-kiel.de/~fritz/ABA-Simulation/ltl.cgi
http://spot.lip6.fr/wiki/SpotWiki

LTL Satisfiability Checking 155

3.2 Symbolic Tools

Symbolic model checkers describe both the system model and property automaton sym-
bolically: states are viewed as truth assignments to Boolean state variables and the tran-
sition relation is defined as a conjunction of Boolean constraints on pairs of current and
next states [[7]]. The model checker uses a BDD-based fix-point algorithm to find a fair
path in the model-automaton product [[17]. CadenceSMVH [32]] and NuSMV@ [9]] both
evolved from the original Symbolic Model Verifier developed at CMU [33]]. Both tools
support LTL model checking via the symbolic translation of LTL to automata described
in [10]. CadenceSMV additionally implements heuristics that attempt to reduce LTL
model checking to CTL model checking in some cases [4].

4 Experimental Methods

4.1 Performance Evaluation

We ran all tests on Ada, a Rice University Cray XD1 cluster[l] Ada is comprised of 158
nodes with 4 processors (cores) per node for a total of 632 CPUs in pairs of dual core
2.2 GHz AMD Opteron processors with 1 MB L2 cache. There are 2 GB of memory
per core or a total of 8 GB of RAM per node. The operating system is SuSE Linux 9.0
with the 2.6.5 kernel. Each of our tests was run with exclusive access to one node and
was considered to time out after 4 hours of run time. We measured all timing data using
the Unix time command.

Explicit Tools. Each test was performed in two steps. First, we applied the translation
tools to the negation of the input LTL formula and ran them with the standard flags
recommended by the tools’ authors, plus any additional flag needed to specify that the
output automaton should be in Promela. Second, each output automaton, in the form
of a Promela never-claim, was checked by SPIN. In this role, SPIN serves as a search
engine for each of the LTL translation tools; it takes a never-claim and checks it for
non-emptiness in conjunction with an input model[]

In all tests, the model was a universal Promela program, enumerating all possible
traces over Prop. For example, when Prop = {A, B}, the Promela model is:

bool A,B;
/* define an active procedure to generate values for A and B */
active proctype generateValues()

{ do
:: atomic{ A = 0; B = 0; }
: atomic{ A =0; B=1; }
:: atomic{ A =1; B=20; }
:: atomic{ A =1; B=1; }
od }

9 http://www.cadence.com/company/cadence_labs_research.html

10 http://nusmv.irst.itc.it/

11 http://rcsg.rice.edu/ada/

12 It would be interesting to use SPOT’s SCC-based search algorithm [23] as the underlying
search engine, rather than SPIN’s nested depth-first search algorithm [12].

http://www.cadence.com/company/cadence_labs_research.html
http://nusmv.irst.itc.it/
http://rcsg.rice.edu/ada/

156 K.Y. Rozier and M.Y. Vardi

We use the atomic{} construct to ensure that the Boolean variables change value in
one unbreakable step. Note that the size of this model is exponential in the number of
atomic propositions.

Symbolic Tools. We compare the explicit tools with CadenceSMV and NuSMV. To
check whether a LTL formula ¢ is satisfiable, we model check —¢ against a universal
SMV model. For example, if ¢ = (X (a)), we provide the following input to NuSMV:

MODULE main
VAR

a : boolean;

b : boolean;

c : boolean;
LTLSPEC ! (X(a=1))
FAIRNESS

1

SMYV negates the specification, =@, symbolically compiles ¢ into Ay, and conjoins Ay
with the universal model. If the automaton is not empty, then SMV finds a fair path,
which satisfies the formula @. In this way, SMV acts as both a symbolic compiler and a
search engine.

4.2 Input Formulas

We benchmarked the tools against three types of scalable formulas: random formulas,
counter formulas, and pattern formulas. Scalability played an important role in our ex-
periment, since the goal was to challenge the tools with large formulas and state spaces.
All tools were applied to the same formulas and the results (satisfiable or unsatisfiable)
were compared. The symbolic tools, which were always in agreement, were considered
as reference tools for checking correctness.

Random Formulas. In order to cover as much of the problem space as possible, we
tested sets of 250 randomly-generated formulas varying the formula length and number
of variables as in [14]. We randomly generated sets of 250 formulas varying the number
of variables, N, from 1 to 3, and the length of the formula, L, from 5 up to 65. We set
the probability of choosing a temporal operator P = 0.5 to create formulas with both
a nontrivial temporal structure and a nontrivial Boolean structure. Other choices were
decided uniformly. We report median running times as the distribution of run times has
a high variance and contains many outliers. All formulas were generated prior to testing,
so each tool was run on the same formulas. While we made sure that, when generating
a set of length L, every formula was exactly of length L and not up to L, we did find
that the formulas were frequently reducible. Tools with better initial formula reduction
algorithms performed well in these tests.

Counter Formulas. Pre-translation rewriting is highly effective for random formulas,
but ineffective for structured formulas [[18, 40]. To measure performance on scalable,
non-random formulas we tested the tools on formulas that describe n-bit binary counters

LTL Satisfiability Checking 157

with increasing values of n. These formulas are irreducible by pre-translation rewriting,
uniquely satisfiable, and represent a predictably-sized state space. Whereas our measure
of correctness for random formulas is a conservative check that the tools find satisfiable
formulas to be satisfiable, we check for precisely the unique counterexample for each
counter formula. We tested four constructions of binary counter formulas, varying two
factors: number of variables and nesting of X’s.

We can represent a binary counter using two variables: a counter variable and a
marker variable to designate the beginning of each new counter value. Alternatively, we
can use 3 variables, adding a variable to encode carry bits, which eliminates the need
for U-connectives in the formula. We can nest X’s to provide more succinct formulas
or express the formulas using a conjunction of unnested X-sub-formulas.

Let b be an atomic proposition. Then a computation 7 over b is a word in (2{071})"3.
By dividing & into blocks of length n, we can view T as a sequence of n-bit values, de-
noting the sequence of values assumed by an n-bit counter starting at 0, and increment-
ing successively by 1. To simplify the formulas, we represent each block by, by, ...,b,—1
as having the most significant bit on the right and the least significant bit on the left.
For example, for n = 2 the b blocks cycle through the values 00, 10, 01, and 11. For
technical convenience, we use an atomic proposition m to mark the blocks. That is, we
intend m to hold at point i precisely when i = 0 mod n.

For 7 to represent an n-bit counter, the following properties need to hold:

1) The marker consists of a repeated pattern of a 1 followed by n-1 0's.
2) The first n bits are 0's.
3) If the least significant bit is 0, then it is 1 n steps later
and the other bits do not change.
4) All of the bits before and including the first 0 in an n-bit block flip
their values in the next block; the other bits do not change.

For n = 4, these properties are captured by the conjunction of the following formulas:

1. (m) & ([I(m -> ((X(!m)) && (X(X(!m))) && (X(X(X(!m))))
&& X(X(X(X(m)))))))
2. ('b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. [1((m && !'b) ->
(X(X(X(X(Db)))) &&
X ((('m) &&
(b -> X(X(X(X(b))))) &&
(!b —> X(X(X(X(!b)))))) Um)))
4. [1 ((m & b) ->
(X(X(X(X(!D)))) &&
(X ((b && !'m && X(X(X(X(!Db))))) U
(m || (Im && !'b && X(X(X(X(b)))) &&
X((Im & (b -> X(X(X(X(b))))) &&
(b —> X(X(X(X(!D)))))) Um)))))))

Note that this encoding creates formulas of length O(n?). A more compact encoding
results in formulas of length O(n). For example, we can replace formula (2) above with:

2. (('b) && X(('b) && X((!b) && X(!b))))

158 K.Y. Rozier and M.Y. Vardi

We can eliminate the use of U-connectives in the formula by adding an atomic
proposition ¢ representing the carry bit. The required properties of an n-bit counter
with carry are as follows:

The marker consists of a repeated pattern of a 1 followed by n-1 0's.

The first n bits are 0's.

If mis 1 and b is 0 then ¢ is 0 and n steps later b is 1.

If mis 1 and b is 1 then ¢ is 1 and n steps later b is 0.

If there is no carry, then the next bit stays the same n steps later.

If there is a carry, flip the next bit n steps later and adjust the carry.

For n = 4, these properties are captured by the conjunction of the following formulas.

1. (m) & ([1(m -> ((X(!m)) && (X(X(!m))) && (X(X(X(!m))))
&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))
3. 0] ((m && !'b) -> (lc && X(X(X(X(Db))))))
4. [1 ((m&& b) -> (c && X(X(X(X(!D))))))
5. [1 ('c & X(!'m)) ->

(X('c) && (X(b) -> X(X(X(X(b))))) &&

(X(1b) -> X(X(X(X(!b))))))
6. [1 (c -> ((X(!'b) -> (X(lc) && X(X(X(X(!b)))))) &&
(X(c) && X(X(X(X(b)))))))

Pattern Formulas. We further investigated the problem space by testing the tools on
the eight classes of scalable formulas defined by [22] to evaluate the performance of
explicit state algorithms on temporally-complex formulas.

E(n)= N\ Opi, U(n)=(...(p1 Upz) U ...) U pn, R(n) = \(30p; VOOpiy).
i=1 =1

Us(n) = p1 U (p2 U (...pp1 Upy)...), Ci(n) = \/ OOpi, Ca(n) = \ OOp;.

i=1 i=1

Q(n) = \(OpivOpir1), S(n) = A Op;.
i=1

5 Experimental Results

Our experiments resulted in two major findings. First, most LTL translation tools are re-
search prototypes, not industrial quality tools. Second, the symbolic approach is clearly
superior to the explicit approach for LTL satisfiability checking.

5.1 The Scalability Challenge

When checking the satisfiability of specifications we need to consider large LTL for-
mulas. Our experiments focus on challenging the tools with scalable formulas. Unfor-
tunately, most explicit tools do not rise to the challenge. In general, the performance of
explicit tools degrades substantially as the automata they generate grow beyond 1,000

LTL Satisfiability Checking 159

states. This degradation is manifested in both timeouts (our timeout bound was 4 hours
per formula) and errors due to memory management. This should be contrasted with
BDD tools, which routinely handle hundreds of thousands and even millions of nodes.
We illustrate this first with run-time results for counter formulas. We display each
tool’s total run time, which is a combination of the tool’s automaton generation time and
SPIN’s model analysis time. We include only data points for which the tools provide
correct answers; we know all counter formulas are uniquely satisfiable. As is shown in
Figures[d] and2[1 SPOT is the only explicit tool that is somewhat competitive with the
symbolic tools. Generally, the explicit tools time out or die before scaling to n = 10,
when the automata have only a few thousands states; only a few tools passed n = 8.

Total P ing Time on 2 (Counter F Total Processing Time on 2-variable Linear Counter Formulas
Correct Results Correct Results

10000 LTL2AUT(B)
CadenceSMV | LTL2AUT(W)

LTL2AUT(B)
LTL2AUT(W)

3500 -

LTL2BA Nusmv LTL2BA
2 LTL2Buchi [~ LTL2Buchi
3000 |- LTL->NBA [——— LTL->NBA
- Modella 8000 ———— Modella CHdEM:‘S'\Sﬂ;V
r Spot ring | Spot u
2500 | TMP LTL2AUT(W) — TMP
» - Wring Py —— Wring
k-] r CadenceSMV o - CadenceSMV
5 L NusmMv § 6000 [NusMv
82000 |- S i
3 r ™P o Wring
c F I c
‘o 1500 - ‘©
o I @ 4000
E g
[[

1000 |-

I I ™P

F 2000

500 [~ : Mo?ella /LTL->NBA
[wodela | LTL->NBA /

L1 f——le aI { | ISPPt | N TN I N I I I B | 0 lTLzIAUT‘/W) 1L 1 1 1 1 1 1 1 1

2 3456 7 8 91011121314151617 18 1920 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bits in binary counter Number of bits in binary counter

o

Fig.1. Performance Results: 2-Variable Fig.2. Performance Results: 2-Variable Linear
Counters Counters

Figures 3] and [] show median automata generation and model analysis times for
random formulas. Most tools, with the exception of SPOT and LTL2BA, timeout or die
before scaling to formulas of length 60. The difference in performance between SPOT
and LTL2BA, on one hand, and the rest of the explicit tools is quite dramatic. Note that
up to length 60, model-analysis time is negligible. SPOT and LTL2BA can routinely
handle formulas of up to length 150, while the symbolic tools scale past length 200,
with run times of a few seconds.

Figure 5 shows performance on the E-class formulas. Recall that ~E(n) is the for-
mula \//_; O-p;. Since each formula O-p; can be translated into an automaton with
a fixed number of states, —E(n) can be translated into an automaton with O(n) states.
Nevertheless, most tools show an unnecessary exponential blow-up. CadenceSMV is
the only tool whose performance seems to scale linearly. (The evidence for NuSMV is
inconclusive.)

Graceless Degradation. Most explicit tools do not behave robustly and die gracelessly.
When LTL2Buchi has difficulty processing a formula, it produces over 1,000 lines of

13 We recommend viewing all figures online, in color, and magnified.

160 K.Y. Rozier and M.Y. Vardi
Average-Behavior Analysis: P = 0.5; N =2 Average-Behavior Analysis: P = 0.5; N =2
5r LTL2AUT(B) ‘6‘ 6 LTL2AUT(B)
- | | LTL2AUT(W) @ = LTL2AUT(W)
° o) LTL2BA 2 r LTL2BA
3 - LTL2Buchi > | — LTL2Buchi
~ - LTL->NBA 5b— LTL->NBA
o 4f Modella [Modella
E L Spot - Spot
L F TMP ‘a B T™P
L ‘Wring N Wring
L £ Ar CadenceSMV
3 o L NusMv
r E I
L = -
C N . SF
o 2 [
[< 2f
< [CHs
1k o [
; i = F
T | -
: i k P
= P TR S Lo ot A = [0} STRTININ BN W B AT ATV AR N |
100 125 150 25 50 75 100 125 150 175 200
Formula length Formula length

Fig. 3. Random Formulas — Automata Genera- Fig.4. Random Formulas — Model Analysis

tion Times Times

Run Times for E-class Scaleable Formulas Number of Automata States for E-class Scaleable Formulas
LTL2AUT(B) 10°
10 LTL2BA F I ::I::g::T(B)
LTL2Buchi [
LTLNBA | 1 LTL2Buchi
Modella I LTL->NBA
,8103 = Spot I gl:;ella
™P
3 CadenceSMV 1 Tmp
;’ , NuSmMV |/ PO
E1E S10°F
' &
c
=Pl s
Z10'E g
[}
- o
2 E
10 E]
% =z
H
=10
10.2 E | | | |
1 1 1 1 1 1 1 1 1 1 1 1 10° Il Il 1 Il 1
2 3 5 6 7 1 1 12 13 0 1 2 3 4 5 6 7 8 9 10
Number of variables in formula Number of variables in formula

Fig. 5. E-class Formula Data

java.lang.StackOverflowError exceptions. LTL2BA periodically exits with “Com-
mand exited with non-zero status 1 and prints into the Promela file, “1t2ba: releasing a
free block, saw “end of formula’.” Python traceback errors hinder LTL—NBA. Modella
suffers from a variety of memory errors including *** glibc detected *** double
free or corruption (out): 0x55f££4008 ***. Sometimes Modella causes a seg-
mentation fault and other times Modella dies gracefully, reporting “full memory” before
exiting. When used purely as a LTL-to-automata translator, SPIN often runs for thou-
sands of seconds and then exits with non-zero status 1. TMP behaves similarly. Wring
often triggers Perl “’Use of freed value in iteration” errors. When the translation results
in large Promela models, SPIN frequently yields segmentation faults during its own
compilation. For example, SPOT translates the formula E(8) to an automaton with 258
states and 6,817 transitions in 0.88 seconds. SPIN analyzes the resulting Promela model

LTL Satisfiability Checking 161

in 41.75 seconds. SPOT translates the E(9) formula to an automaton with 514 states and
20,195 transitions in 2.88 seconds, but SPIN segmentation faults when trying to com-
pile this model. SPOT and the SMV tools are the only tools that consistently degrade
gracefully; they either timeout or terminate with a succinct, descriptive message.

A more serious problem is that of incorrect results, i.e., reporting “satisfiable” for an
unsatisfiable formula or vice versa. Note, for example, in Figure 3 the size of the au-
tomaton generated by TMP is independent of n, which is an obvious error. The problem
is particularly acute when the returned automaton A, is empty (no state). On one hand,
an empty automaton accepts the empty language. On the other hand, SPIN conjoins the
Promela model for the never-claim with the model under verification, so an empty au-
tomaton, when conjoined with a universal model, actually acts as a universal model. The
tools are not consistent in their handling of empty automata. Some, such as LTL2Buchi
and SPOT return an explicit indication of an empty automaton, while Modella and TMP
just return an empty Promela model. We have taken an empty automaton to mean “un-
satisfiable.” In Figure|6| we show an analysis of correctness for random formulas. Here
we counted “correct” as any verdict, either “satisfiable” or “unsatisfiable,” that matched
the verdict found by the two SM Vs for the same formula as the two SMVs always agree.
We excluded data for any formulas that timed out or triggered error messages. Many of
the tools show degraded correctness as the formulas scale in size.

Random Formula Analysis: P =0.5;N=3

LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA

Modella
Spot
T™P
Wring

05

Proportion of Correct Claims

0 1 1 1 1 1 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50 55 60 65
Formula length

o

Fig. 6. Correctness Degradation

Does Size Matter? The focus of almost all LTL translation papers, starting with [24]],
has been on minimizing automata size. It has already been noted that automata mini-
mization may not result in model checking performance improvement [[18]] and specific
attention has been given to minimizing the size of the product with the model [38} 22].
Our results show that size, in terms of both number of automaton states and transitions
is not a reliable indicator of satisfiability checking run-time. Intuitively, the smaller the
automaton, the easier it is to check for nonemptiness. This simplistic view, however,
ignores the effort required to minimize the automaton. It is often the case that tools

162 K.Y. Rozier and M.Y. Vardi

Number of Automata States for 2-variable Counter Formulas Number of Automata States for 2-variable Linear Counter Formulas
o o
10°F 1 LTL2AUT(B) 10°F 1 LTL2AUT(B)
F] LTL2AUT(W) F] LTL2AUT(W)
L I LTL2BA F I LTL2BA
o 1 LTL2Buchi o 1 LTL2Buchi
o 1 LTL->NBA o 1 LTL->NBA
I Modella I Modella
10°F Spot 10°F Spot
F 1 T™P F 1 TMP
'] F 1 Wring '] F 1 Wring
e e N
I § T L
3 3
» T &
5 02 5 02
S10°E S10°E
o F o F
a F o F
€ I E [
= =
A = |
10'F 10'F
o 1 1 I o0 | | 1 1 I
10 1 2 3 4 5 8 9 10 10 1 2 3 4 5 6 7 8 9 10
Number of bits in binary counter Number of bits in binary counter

Fig. 7. Automata Size: 2-Variable Counters ~ Fig.8. Automata Size: 2-Variable Linear

Counters
Number of Automata States for 3. i F F of A Transitions for 3-variable Random Formulas
90% Correct or Better " 90% Correct or Better
300 1 LTL2AUT(B) 10 1 LTL2AUT(B)
L I LTL2AUT(W) F 1 LTL2AUT(W)
F 1 F] LTL2BA
I 1 LTL2Buchi - 1 LTL2Buchi
250 |- 1 LTL->NBA 5 | LTL->NBA
r | Modella 10 | Modella
B Spot @ E Spot
r | TMP 2 F | T™P
So00 - | wring S | I Wring
s [% 0
[F g E
Bisol c
;1 50 r s i
2 F 5 10
ER E-]
=100 §
- 4
I 10°
50
ol L_ | 10
5 10 15 20 25 30 35 40 45 50 55 60 65 5 10 15 20 25 30 35 40 45 50 55 60 65
Formula Length Formula Length

Fig. 9. State and Transition Counts for 3-Variable Random Formulas

spend more time constructing the formula automaton than constructing and analyzing
the product automaton. As an example, consider the performance of the tools on counter
formulas. We see in Figures[Tland Rldramatic differences in the performance of the tools
on such formulas. In contrast, we see in Figures[7land [§] that the tools do not differ sig-
nificantly in terms of the size of generated automata. Similarly, Figure 5, shows little
correlation between automata size and run time for E-class formulas.

Consider also the performance of the tools on random formulas. In Figure[9l we see
the performance in terms of size of generated automata. Performance in terms of run
time is plotted in Figure [I1] where each tool was run until it timed out or reported an
error for more than 10% of the sampled formulas. SPOT and LTL2BA consistently have
the best performance in terms of run time, but they are average performers in terms of
automata size. LTL2Buchi consistently produces significantly more compact automata,

LTL Satisfiability Checking 163

in terms of both states and transitions. It also incurs lower SPIN model analysis times
than SPOT and LTL2BA. Yet LTL2Buchi spends so much time generating the automata
that it does not scale nearly as well as SPOT and LTL2BA.

5.2 Symbolic Approaches Outperform Explicit Approaches

Across the various classes of formulas, the symbolic tools outperformed the explicit
tools, demonstrating faster performance and increased scalability. (We measured only
combined automata-generation and model-analysis time for the symbolic tools. The
translation to automata is symbolic and is very fast; it is linear in the size of the formula
[10].) We see this dominance with respect to counter formulas in Figures[I] and 2] for
random formulas in Figures Bl @] and [[1] and for E-class formulas in Figure[3l For U-
class formulas, no explicit tools could handle n» = 10, while the symbolic tools scale up
to n = 20; see Figure The only exception to the dominance of the symbolic tools
occurs with 3-variable linear counter formulas, where SPOT outperforms both symbolic
tools. We ran the tools on many thousands of formulas and did not find a single case in
which either symbolic tool yielded an incorrect answer yet every explicit tool gave at
least one incorrect answer during our tests.

Run Times for U-class Scaleable Formulas Number of Automata States for U-class Scaleable Formulas

. LTL2AUT(B) 10° |
10" LTL2AUT(W) F
E LTL2BA

LTL2AUT(B)
LTL2AUT(W)
LTL2BA

| LTL2Buchi
| LTL>NBA
| Modella
I

I

F LTL2Buchi
10 LTL->NBA

<

Wring
CadenceSMV
NusMv

: &
Number of States

Median Total Run Time (sec)
3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 3 4 5 7
Number of variables in formula Number of variables in formula

Fig. 10. U-class Formula Data

The dominance of the symbolic approach is consistent with the findings in [35} 36,
which reported on the superiority of a symbolic approach with respect to an explicit
approach for satisfiability checking for the modal logic K. In contrast, [39] compared
explicit and symbolic translations of LTL to automata in the context of symbolic model
checking and found that explicit translation performs better in that context. Conse-
quently, they advocate a hybrid approach, combining symbolic systems and explicit
automata. Note, however, that not only is the context in [39] different than here (model
checking rather than satisfiability checking), but also the formulas studied there are gen-
erally small and translation time is negligible, in sharp contrast to the study we present
here. We return to the topic of model checking in the concluding discussion.

164 K.Y. Rozier and M.Y. Vardi

Random Formula Analysis: P = 0.5;N=3 Random Formula Analysis: P = 0.5;N=3

90% Correct or Better 90% Correct or Better
[LTL2AUT(B)
| /3

LTL2AUT(B)
LTL2AUT(W)

IS
™

LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella

Spot

T™P

w
T

LTL2Buchi
F LTL->NBA

8F Modella

F Spot

™P

Wring |/

12

>n Time (sec)

——— Wring
CadenceSMV
NuSMV

Automata
Median Model Analysis Time (sec)
oo oooo o oo
RN R
T T

1 E 1 1 1 1 11111
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 10 15 20 25 30 35 40 45 50 55 60 65
Formula length Formula length

Fig.11. Automata generation and SPIN Analysis Times for 3-Variable Random Formulas

Figures 3l 4] and [I1] reveal why the explicit tools generally perform poorly. We see
in the figures that for most explicit tools automata-generation times by far dominate
model-analysis times, which calls into question the focus in the literature on minimiz-
ing automata size. Among the explicit tools, only SPOT and LTL2BA seem to have
been designed with execution speed in mind. Note that, other than Modella, SPOT and
LTL2BA are the only tools implemented in C/C++.

6 Discussion

Too little attention has been given in the formal-verification literature to the issue of
debugging specifications. We argued here for the adoption of a basic sanity check: sat-
isfiability checking for both the specification and the complemented specification. We
showed that LTL satisfiability checking can be done via a reduction to checking univer-
sal models and benchmarked a large array of tools with respect to satisfiability checking
of scalable LTL formulas.

We found that the existing literature on LTL to automata translation provides little in-
formation on actual tool performance. We showed that most LTL translation tools, with
the exception of SPOT, are research prototypes, which cannot be considered industrial-
quality tools. The focus in the literature has been on minimizing automata size, rather
than evaluating overall performance. Focusing on overall performance reveals a large
difference between LTL translation tools. In particular, we showed that symbolic tools
have a clear edge over explicit tools with respect to LTL satisfiability checking.

While the focus of our study was on LTL satisfiability checking, there are a cou-
ple of conclusions that apply to model checking in general. First, LTL translation tools
need to be fast and robust. In our judgment, this rules out implementations in languages
such as Perl or Python and favors C or C++ implementations. Furthermore, attention
needs to be given to graceful degradation. In our experience, tool errors are invari-
ably the result of graceless degradation due to poor memory management. Second, tool

LTL Satisfiability Checking 165

developers should focus on overall performance instead of output size. It has already
been noted that automata minimization may not result in model checking performance
improvement [18]] and specific attention has been given to minimizing the size of the
product with the model [38]]. Still, no previous study of LTL translation has focused on
model checking performance, leaving a glaring gap in our understanding of LTL model
checking.

References

(1]

(2]

(3]

(4]

(3]

(6]
(7]

8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

Ammons, G., Mandelin, D., Bodik, R., Larus, J.R.: Debugging temporal specifications with
concept analysis. In: PLDI, Proc. ACM Conlf., pp. 182-195 (2003)

Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi, M.Y.:
Enhanced vacuity detection for linear temporal logic. In: Hunt Jr., W.A., Somenzi, F. (eds.)
CAV 2003. LNCS, vol. 2725, Springer, Heidelberg (2003)

Beer, 1., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL for-
mulas. Formal Methods in System Design 18(2), 141-162 (2001)

Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking of
linear time logic properties. In: Halbwachs, N., Peled, D.A. (eds.) Computer Aided Verifi-
cation. LNCS, vol. 1633, pp. 222-235. Springer, Heidelberg (1999)

Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A., Cheng,
S.-T., Edwards, S., Khatri, S., Kukimoto, T., Pardo, A., Qadeer, S., Ranjan, R.K., Sarwary,
S., Shiple, T.R., Swamy, G., Villa, T.: VIS: a system for verification and synthesis. In: Alur,
R., Henzinger, T.A. (eds.) Computer Aided Verification. LNCS, vol. 1102, pp. 428-432.
Springer, Heidelberg (1996)

Bryant, R.E.: Graph-based algorithms for boolean-function manipulation. IEEE Trans. on
Computers, vol. C-35(8) (1986)

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98(2), 142-170 (1992)

Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191-206. Springer,
Heidelberg (2005)

Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. It’1 J. on Software Tools for Tech. Transfer 2(4), 410-425 (2000)

Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. Formal
Methods in System Design 10(1), 47-71 (1997)

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient algorithms
for the verification of temporal properties. Formal Methods in System Design 1, 275-288
(1992)

Couvreur, J-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M., Woodcock,
J.C.P,, Davies, J. (eds.) FM’99 - Formal Methods. LNCS, vol. 1708, pp. 253-271. Springer,
Heidelberg (1999)

Daniele, N., Guinchiglia, F., Vardi, M.Y.: Improved automata generation for linear tempo-
ral logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV’99. LNCS, vol. 1633, pp. 249-260.
Springer, Heidelberg (1999)

Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library using
transition-based generalized biichi automata. In: MASCOTS, Proc. 12th Int’l Workshop,
pp. 76-83. IEEE Computer Society, Los Alamitos (2004)

166

(16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]
[31]
[32]

[33]
[34]

[35]

[36]

(371

K.Y. Rozier and M.Y. Vardi

Emerson, E.A.: Temporal and modal logic (chapter 16). In: Van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 997-1072. Elsevier, MIT Press, Cam-
bridge (1990)

Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional u-
calculus. In: LICS, 1st Symp., Cambridge, pp. 267-278 (1986)

Etessami, K., Holzmann, G.J.: Optimizing Biichi automata. In: Palamidessi, C. (ed.) CON-
CUR 2000. LNCS, vol. 1877, pp. 153-167. Springer, Heidelberg (2000)

Fritz, C.: Constructing Biichi automata from linear temporal logic using simulation rela-
tions for alternating biichi automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS,
vol. 2759, pp. 35—48. Springer, Heidelberg (2003)

Fritz, C.: Concepts of automata construction from LTL. In: Sutcliffe, G., Voronkov, A.
(eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 728-742. Springer, Heidelberg (2005)
Gastin, P., Oddoux, D.: Fast LTL to Biichi automata translation. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53-65. Springer, Heidelberg (2001)
Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking. In:
Valmari, A. (ed.) Model Checking Software. LNCS, vol. 3925, pp. 53-70. Springer, Hei-
delberg (2006)

Geldenhuys, J., Valmari, A.: Tarjan’s algorithm makes on-the-fly LTL verification more
efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 205-219.
Springer, Heidelberg (2004)

Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of
linear temporal logic. In: Dembiski, P., Sredniawa, M. (eds.) Protocol Specification, Test-
ing, and Verification, August 1995, pp. 3—18. Chapman & Hall, Sydney, Australia (1995)
Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of LTL
formulae to Biichi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,
vol. 2529, Springer, Heidelberg (2002)

Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 306-321. Springer, Heidelberg (2004)

Gurfinkel, A., Chechik, M.: How vacuous is vacuous. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 451-466. Springer, Heidelberg (2004)

Holzmann, G.J.: The model checker SPIN (Special issue on Formal Methods in Software
Practice). IEEE Trans. on Software Engineering 23(5), 279-295 (1997)

Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H. (eds.)
CONCUR 2006. LNCS, vol. 4137, pp. 37-51. Springer, Heidelberg (2006)

Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. J. on Software
Tools For Technology Transfer 4(2), 224-233 (2003)

Kurshan, R.P.: FormalCheck User’s Manual. Cadence Design, Inc. (1998)

McMillan, K.: The SMV language. Technical report, Cadence Berkeley Lab (1999)
McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1993)
Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in model
checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 57-69. Springer,
Heidelberg (2004)

Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for K. In: Voronkov, A.
(ed.) Automated Deduction - CADE-18. LNCS (LNAI), vol. 2392, pp. 16-30. Springer,
Heidelberg (2002)

Piterman, N., Vardi, M.Y.: From bidirectionality to alternation. Theoretical Computer Sci-
ence 295(1-3), 295-321 (2003)

Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 485-499. Springer, Heidelberg (2002)

[38]

[39]

[40]
[41]
[42]
[43]
[44]
[45]

[40]

LTL Satisfiability Checking 167

Sebastiani, R., Tonetta, S.: more deterministic vs. smaller biichi automata for efficient LTL
model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp.
126-140. Springer, Heidelberg (2003)

Sebastiani, R., Tonetta, S., Vardi, M.Y.: Symbolic systems, explicit properties: on hybrid
approaches for LTL symbolic model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 350-373. Springer, Heidelberg (2005)

Somenzi, F., Bloem, R.: Efficient Biichi automata from LTL formulae. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248-263. Springer, Heidelberg (2000)
Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Biichi automata. STTT
- Int’1J. on Software Tools for Tech. Transfer 4(1), 57-70 (2002)

Thirioux, X.: Simple and efficient translation from LTL formulas to Biichi automata. Electr.
Notes Theor. Comput. Sci, vol. 66(2) (2002)

Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M., Mitchell, J.C.
(eds.) TACS 1994. LNCS, vol. 789, pp. 575-597. Springer, Heidelberg (1994)

Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 137-150. Springer, Heidelberg (2007)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proc. 1st LICS, pp. 332-344 (1986)

Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Compu-
tation 115(1), 1-37 (1994)

	Introduction
	Theoretical Background
	Tools Tested
	Explicit Tools
	Symbolic Tools

	Experimental Methods
	Performance Evaluation
	Input Formulas

	Experimental Results
	The Scalability Challenge
	Symbolic Approaches Outperform Explicit Approaches

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

